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Exact calculations of the relaxation for a model of electron transfer
with strong electronic coupling
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We study the short-time relaxation of a model of electron transfer with strong electronic coupling
using exact enumeration of path-integral representation of population function. For asymmetric two-
state systems, we find boundaries between phases of coherent and incoherent relaxation. We contrast
the relaxation of the normal and inverted regions. In the normal region, the relaxation obeys the
power law. In the inverted region, the relaxation is exponential. The rate constant in the inverted
region is calculated. The effect of a third state is also investigated.

PACS number(s): 05.30.—d, 64.60.Cn, 73.40.Gk, 75.10.Jm

I. INTRODUCTION

In traditional treatments [1,2], the dynamics of elec-
tron transfer [3] is viewed in terms of incoherent and
uncorrelated transitions between charge localized states.
For large enough interstate coupling, however, transitions
can be correlated in time and may also exhibit coher-
ence. In this paper, we consider examples of correlations
and coherence for a simple but realistic class of models.
Specifically, we examine asymmetric two- and three-state
systems coupled to a bath with linear Ohmic response.
This class of models is discussed in Sec. II. It represents
a generalization of the often studied spin-boson system
[4,5]. Simulation studies have demonstrated that this
type of model can well approximate the behavior of more
detailed molecular models [6-10]. For a variety of cases,
we carry out dynamical calculations through exact inte-
gration and explicit enumeration of quantum paths. The
computation time for this type of calculations grows ex-
ponentially with the number of physical time steps. As
such, we are limited to the length of time which can
be studied. With reasonable computational resources,
it is possible to examine correlation functions and relax-
ation for times as long as one or two tunneling periods.
This length is sufficient to determine the phase bound-
ary between coherent and incoherent relaxation and the
effects of asymmetry on this boundary. In the incoherent
regime, we are also able to estimate the functional form
of the relaxation. Details of our computational proce-
dure are given in Sec. III and the Appendixes. Results
are presented in Sec. IV, and the paper is concluded in
Sec. V.

II. MODEL

We investigate the following three-level system coupled
to a bosonic bath:

H = Ho+ Hp + Hint, (2.1)
where Hy is the bare Hamiltonian
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where p; is the conjugate momentum of the normal mode
z; with mass m;. The three states refer to charge local-
ized states. As such, the effects of the fluctuating fields of
an environment can be reasonably described through di-
agonal system-bath coupling. We assume that the fields
are coupled to the diagonal elements of the three-level
system. The case of the off-diagonal coupling is also of
interest, but in this paper we deal only with the diago-
nal coupling. We also assume that the system-bath cou-
pling is linear. The validity of the linear approximation
for electron transfer, which underlies Marcus theory, has
been established computationally [7]. Hence,

Hipt = 12012 + E23023 + E13013. (2.4)
Here, the o;;’s are
1 0 0
012 = (0 -1 0) y
0 0 O
0 0 o
023 = (0 1 0 ) ,
0 0 -1
-1 0 0
013 = ( 0 0 0) )
0 0 1
and & = } . cjkzj, where k runs over A = (12),

B = (23), and C = (13). The variables & are like local
electric fields which couple to a charge transfer dipole.
The behavior of the relevant bath variables is described
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by the spectral density

Jia(w) = ZZCJ"CJH;( —wj). (2.5)

For electron transfer in complex systems such as liquids
or proteins, the appropriate spectral density is Ohmic
[7,11]. We choose the following function for the spectral
density:

T (w) = nrw exp(—w/w,(ﬁ)). (2.6)
The dynamics of transitions between the charge local-

ized states is the dynamics of electron transfer. One mea-
sure of it is the population autocorrelation function,

(ma(0)a () =  Telexp(~ BH) s exp(iHt/R)

xny exp(—iHt/h)], (2.7)

where n; is the population operator for state 1,

1 00
n1=(0 0 O),
0 0 O

B =1/kgT, and Z = Trexp(—BH). Another measure is
the nonequilibrium population, such as

A () = Zilmexp(—ﬁﬂl) exp(iHt/R)ny exp(—iHt/R)],

(2.8)

where H; and Z; are the Hamiltonian and the partition
function, respectively, for the system constrained to state
1. This quantity describes the relaxation of state 1 after
an initial preparation which constrained the system to
that charge localized state. When linear response theory
is accurate, 721 (t) and (n1(0)ny(t)) exhibit the same time
dependence. In general, however, the two functions can
be markedly different as some of our results will demon-
strate.

III. NUMERICAL METHODS

To carry out the computation of #4(t) and
(n1(0)ny(t)), we employ the path-integral sum represen-
tation of the propagators, exp(—GH) and exp(+iHt/R).
In particular, we use the standard Trotter formula [12].
The bath is removed from explicit consideration by the
method of Gaussian integration. The resulting dis-
cretized action is a functional of the spin variable o)
which labels the state occupied at time slice 2 (a'(i) =1,0,
and —1 correspond to states 1, 2, and 3, respectively).
The effect of the bath appears in an influence functional
which couples spins at different times. Spins at adjacent
time slices are coupled by the action associated with Hg.

The procedure for deriving this representation follows
closely the analysis of the symmetric spin-boson model
described in Refs. [4,13,14]. Our generalization to three
states employs the spin algebra discussed, for example,

for the S = 1 transverse Ising model in Ref. [15]. The case
of a three-level system with one bath has been treated by
Egger and Mak [16]. As shown in Appendix A, we find

(m(Om() = 5 3 exple({o:))
{o)

xny (c®T)n, (o PTITY), (3.1)

where

({o: ). (3.2)

7z = Z explp

{o:}

Here p and q are the number of spins on the thermal and
time paths, respectively. ¢({o(¥}) is the action given
in Appendix A as a function of the classical spins (%),
i =1,..,(p + 2q), and ny(0) = (¢ + 02)/2 is 1 when
o =1, and zero otherwise. Similarly,

m(t) = 5= 3 explp{rOPIm(@# D), (33)

{o:}

where Z; and the primed summation samples with all
cr(i)=1for1§i§p+1.

To evaluate the summations, we can perform either a
Monte Carlo simulation or exact numerical enumeration
of the paths. In the quantum Monte Carlo simulation,
one encounters the sign problem [13,17-23]. There have
been several attempts to overcome the situation. Re-
cently, Egger and Mak [19] proposed the optimized filter-
ing method, which reduces the statistical error due to the
sign problem. In this paper, we report the exact enumer-
ation, which is free of the sign problem. The limitation
of our chosen procedure, of course, is that the compu-
tational effort grows exponentially with the number of
spins (and thus length of time t). The computational
time for Monte Carlo simulation grows as a low power of
this number.

In our computer code, we generate spin configurations,
calculate the action for each configuration, and add the
quantities. The code is suitable for vectorization, because
we can use a large vector length by vectorizing with the
spin states. Typically, for a two-level system, we used
states of 12 spins (4096 states) for the innermost vector
loop. The bulk of the CPU time is spent calculating
the exponential of action ¢({o(?}). The details of the
algorithm are shown in Ref. [24]. For N = 27 spins
[N = p+ 2q for (ny(0)n(t)) or N = 2q — 1 for 7,(t)],
the exact enumeration of a two-level system requires the
summation of about 10® states and takes about 3 min
on the Cray X-MP computer at University of California,
Berkeley. For short-time behavior in the case of strong
electronic coupling (i.e., the coherent or nearly coherent
regime) this method is more effective than the stationary-
phase Monte Carlo simulation. Deep into the incoherent
regime for long times, Monte Carlo simulation would be
preferable.
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IV. RESULTS
A. Adiabatic case for two-level system

We consider first the limit of an adiabatic bath. Here,
the bath influences the tunneling system as a mean field,
and the spin correlation functions can be evaluated ex-
actly in terms of simple integrals. The general three-state
system is analyzed in Appendix B. A special case is the
asymmetric two-state system for which

/ dE exp (__) sin® (£ (£)t/h)

G
(4.1)

A(t) =

(see Ref. [6] for the symmetric two-level system) where

1) = {(8+ﬁx— 521—) +K2}1/2

and K = J12, £ = 512, C/ﬂ =X = <52>, Ez = 0, and
Ja3 = J13 = 0. The corresponding diabatic energies are

(4.2)

52
E+(£)—_——+£+E17
2
E_(€) = g—c—g (4.3)

For three different cases the diabatic surfaces are drawn
in Fig. 1. If we look at #1(¢, F1) as a function of Ey, we
obtain, from Eq. (4.1) and Eq. (4.2), f1(¢,2c — a) =
71(¢,2¢ + a). It can be shown that the largest initial os-
cillation in 714 (¢) occurs for the case where E; = 2c. This
value of E; coincides with the boundary between the nor-
mal [e.g., case (a)] and inverted [e.g., case (c)] regions of
electron transfer.

The exactly solvable adiabatic bath limit can be used
as a basis for comparison to determine the largest accept-
able time steps in the Trotter discretization. An example
of 711(t) in the adiabatic bath limit is shown in Fig. 2.

B. Phase diagram for asymmetric two-level system

In this subsection, we investigate the asymmetric two-
level system in the Ohmic bath of Eq. (2.6). The results
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~N
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FIG. 1. Diabatic surfaces for the adiabatic case of

E,/K = 0,4,8 [(a), (b), (c), respectively] and BK = 1.0,
c¢/K? =2.0, E; = 0.
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FIG. 2. n;(t) for two-level adiabatic case of BK = 0.4,
c/K* =05, E;/K =3, E; =0, and Kt/hi==/2 (O), 3r/4
(+), ™ (*). The solid line is the exact result obtained from
Eq. (4.1).

were obtained by exact enumerations of the paths. We
set n4aa = n and wff}; = w(®, In Fig. 3, we show an ex-
ample of relaxation as a function of the strength of bath
n. Changing 7 coincides with changing the diabatic sur-
face curvature, 7/2w(®)y. When 7 is small, the relaxation
shows oscillatory behavior and we call this coherent be-
havior. When 7 is large, the relaxation becomes a mono-
tonically decreasing function and we call this incoherent
behavior.

In Fig. 4, we show the coherent-incoherent phase di-
agram obtained by analyzing the relaxation 71(t).
high temperatures, the phase boundary is relatively in-
dependent of the asymmetry or driving force E;. At
low temperatures, there is dependence upon FE;. For
kT /K > 2.5, the phase boundary for asymmetric cases
E;/K = 2 or —2 lies at smaller n than for the symmetric
case E1 /K = 0. Around kgT/K ~ 2.5, the phase bound-
ary for E1/K = —2 crosses that for E;/K = 0. Below
this temperature, the coherent phase for F1/K = —2
stretches to large 7.

At low temperatures, we can see a difference in phase
boundary between the two cases E;/K = 2 and E; /K =
—2. For example, at kgT/K = 1 and /A = 0.8 in
Fig. 4, the case E;/K = 2 gives incoherent behavior
while E;/K = —2 gives coherent behavior. This means

(ﬁl(tl)— <ny>)/(1- <ny>)

T T T T

T
T S T |

0.5}

T
1

0 . X .
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Kt/ h

(n1)]/(1 — (n1)) for n/k =
—2’ E2 = 0’ MC/K :25,

FIG. 3. Relaxation [f1(t) —
0.1,0.18,0.5 (+,0,x), B1/K =
kT/K =7.5.
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FIG. 4. The phase diagram of the asymmetric two-level
system for fw./K = 2.5, and E, /K = 2,0,—-2 (X, +, *).

that, if two diabatic states under these conditions are
separated by a driving force of 2K, going from the lower
to the higher state occurs coherently, while going from
the higher to the lower state occurs incoherently. No-
tice that this asymmetric behavior is a nonlinear effect.
In the linear regime, the time correlation function ex-
pression for 7i1(t) would predict a symmetric time de-
pendent behavior as 7;(t) ~ 1 — 7a(t). Specifically,
71(t) — (n1) is proportional to a complex time integral
of (6n1(0)én1(2)), [6n1(t) = n1(t) — (n1)]; this autocor-
relation function is identical to (6ny(0)dn2(t)). Thus the
quantity 7, (t) contains some properties that are averaged
out in (nq1(0)ny(t)).

C. Relaxation in the incoherent phase

In this subsection, we compare the normal region and
inverted region in the incoherent phase. In this com-
parison, we confine our examination to those regions of
parameter space where our limited range of time (fmax =
gAt, g = 14, i.e., 14 Trotter time steps) is still reasonably
long. The results were obtained by exact enumerations.
In Fig. 5 we show relaxation for different values of Ej.
In Fig. 6, we analyze the functional form of the relax-
ation of Fig. 5. In the normal region, we see that the
relaxation occurs as a power law; while in the inverted
region, it occurs as an exponential. The power-law re-

(m ()~ < m >)/(1- <ny >)

T T T T

0.8} 4
0.6} _

0.4t 4

0.2 .,
0 05 1 15 2

Kt/ h

FIG. 5. #1(t) for an asymmetric two-state system in a
bath with BK = 1.0, fw./K =2.5, n/h = 1.2566, and
E,/K = 7,5,3,1,0 (+, O, x, A,x) obtained by exact enu-
meration.

ln(ﬁl(t)—“< ny >)
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FIG. 6. In[f1(t) — (n1)] as a function of (a) Int and (b) ¢,
for an asymmetric two-state system in a bath with 8K = 1.0,
hw./K = 2.5, n/h = 1.2566, and E,/K = 7,5,3,1,0 (+, [J,
X, A,x) obtained by exact enumeration. The dashed line is
obtained by fitting the last 12 points to a straight line.

laxation can be interpreted as an intermediate behavior
between coherent relaxation and exponential relaxation.
In the normal region, we calculated the power v in

5 (t) - (nl) ~ A t—u, (4.4)
where A and v are constants independent of time ¢. The
power v is plotted as a function of energy F; in Fig. 7(a).
As the driving force becomes larger, the exponent v be-
comes larger and the relaxation becomes faster until the
system reaches the inverted region.

In the inverted region, we fit the following equation to
the relaxation:

fi1(t) — (n1) ~ A’ exp(—t/7). (4.5)
Here, A’ and 7 are constants independent of time ¢. The
time constant 7 is plotted as a function of energy E; in
Fig. 7(b). As the energy F, is increased, 7 increases and
the relaxation becomes slower.

As we can see in these results, we have different types of
relaxation in the normal region and the inverted region.
The case of small electronic coupling K is most often con-
sidered in the theory of electron transfer [1,2]. Here, we
are dealing with the case of strong electronic coupling K.
The strong electronic coupling gives power-law behavior
for the relaxation of the population function.

From the time constant 7, we get the rate constant
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FIG. 7. (a) The exponent v for the power-law decay and
(b) the time constant 7 for the exponential decay as a function
of energy F; for an asymmetric two-state system in a bath
with 8K = 1.0, lw./K = 2.5, n/h = 1.2566. As shown in
Fig. 6, we fitted the last 12, 11, or 10 points to a straight
line, obtained v or 7 for each case, and calculated the average

and the standard deviation from those three sets of data.

k = 1/r. In Fig. 8, we plot the rate constant k as a
function of the energy E; and compare it with the rates
predicted by classical and quantal golden rate formulas.
In the normal region, our results show that the relax-
ation is not exponential. The rate constant is therefore
not perfectly defined, and error bars indicate as such in

00— | ‘ ' '
-0.587 -
In(hk/K) .
M | P .
2 3 | 5 6 7

E/K

FIG. 8. The rate constant k as a function of energy E, for
an asymmetric two-state system in a bath with BK = 1.0,
hwe./K = 2.5, n/h = 1.2566. The dotted line is the rate
constant obtained from the quantum mechanical golden rule
calculation employing the formulas of van Duyne and Fischer
[30]. The dashed line is obtained from those formulas in the
classical limit for the bath.

the inverted region. The driving force that gives the max-
imum rate of transfer shifts to around E,/K = 2.7, as
opposed to E; /K = 4 predicted from classical theory —
the intersection of diabatic surfaces. Both the quantal
golden rule calculation and our results give the shifting
of the peak to a smaller value of E;. However, the golden
rule calculation overestimates the rate constant for the
strong-coupling case, as shown in Fig. 8.

D. The effect of the third state

To look at the effect of the third state, we have per-
formed an exact calculation on the three-level model.
(For other studies on three-level models, see, for example,
Refs. [16] and [25].) In Fig. 9, we show some examples of
the relaxation of the three-level model for different val-
ues of E5. Here, the number of time slices is ¢ = 9. We
checked the convergence by performing the calculations
with different values of At.

From Fig. 9, one can see that the rate becomes slower
as F, is increased. Panel (c) refers to the case where
transfer flows from state 1 to state 3, with state 2 being
an intermediate of higher energy. This particular juxta-
position of states may be relevant to the primary charge

0.8\ |

n;(t) 0.6¢ E
(=123 4] 1
0.2} ' (a)

0.8} 1 34
(1) 0.6 ]
(1=1,2,3)
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FIG. 9. Relaxation of three-level system with 8K = 1,

W(AA)/h n(BB)/ﬁ = 06, n* = 0 for other i.
"V /K = hwlPP)/K =25. E,/K = 3, Es/K = 0,
le/K = Jza/K = —1,J13/K = 0. (a.) Ez/K = 1, (b)

E,/K = 3, and (c) E2/K = 5. The relaxations 71 (t), f2(t),
and 7i3(t) are denoted by +, [, and X, respectively. Arrows
indicate the values 7i;(t) acquire when finally equilibrated.
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transfer step of photosynthesis [11,26], although the cou-
pling constant in our simulation is very large. Simple
superexchange theory [1] in which state 2 is a virtual
intermediate is not sufficient to describe the dynamics
shown in Fig. 9. The superexchange perturbation treat-
ment is valid through second order in K/(E,— E1). State
2, however, has a significant population at intermediate
terms. This population follows from contributions to the
dynamics of the order of [K/(E2 — E1)]* and higher.

Photosynthesis has also been studied by Egger and
Mak [16]. They looked at much smaller coupling con-
stants than our simulation. Our large coupling gives a
smaller time scale. (For room temperature T' = 300, the
time scale t = 4 corresponds to about 0.6 ps, which is
shorter than the typical electron transfer rate 3 ps [26]
in photosynthetic bacteria.) Also, Egger and Mak are
looking at the incoherent region, whereas our simulation
shows coherent behavior for 7i,.

We have also studied the case with K33 # 0, and the
phase diagram is shown in Fig. 10. This corresponds
to a simple case of multiple pathways (state 1 — 2 or 1
— 2 — 3). The pathways for cytochrome c have been
studied by Regan et al. [27]. Of course, our coupling
constant is too strong for proteins. As has been pointed
out by Kostié et al. [28], the strong-coupling case can be
found in charge transfer in solids, for example, hydrogen
tunneling in metals [29].

The phase diagram in Fig. 10 is determined by the
behavior of 71(t). The basic behavior concerning 7 is
similar to the case of the two-level system: for small
we have a coherent region, and for large n we have an
incoherent region. The effect of Ej is that, if E3 is close
to E; and E,, we have the coherent region, and if Ej
is farther away from F; and E,, we have the incoherent
region. The phase boundary in the region 3 < E3/K < 4
is not clear since the oscillation periods of the coherent
states are longer than those with other values of F3. It
would be interesting to study the phase diagram with
respect to other parameters such as Ji; and w,.

6 ; . - .
° o d + . + +
41 oo meoherent
21 oo e v o
E3/K B
O o ° ° ° ° o/ + o+ ~
°© '#
2| et
coherent s
4 . . . ‘
0 02 04 06 038 1
n/ h
FIG. 10. Phase diagram determined by the behav-
ior of #i(t) for three-level system with BK = 1,
= plad) = n(BB) = 0.4k, n* = 0 for other .
i /K = RwlPP) /K =25. E/K = 3, B;/K = 0,
Ji2 = J23 = J13 = —K. ¢ denotes the coherent region

and + denotes the incoherent region. The dashed line is an
approximate phase boundary.

V. SUMMARY AND FUTURE PROBLEMS

We investigated the asymmetric two-level system. We
obtained the phase boundary for the coherent-incoherent
transition in the case of the asymmetric two-level model.
At high temperatures, the asymmetry destroys coher-
ence and we observed a smaller coherent phase than in
the symmetric case. At low temperatures, the transition
from the low energy state to the high energy state be-
comes very slow and we observe a large coherent phase.
In the incoherent phase, if the electronic coupling is large,
the relaxation follows a power law in the normal region
and an exponential law in the inverted region.

In this paper, we did not treat the cases of small or
intermediate electronic coupling. These cases are inter-
esting in terms of long-distance electron transfer includ-
ing photosynthesis. Also of interest is the case of other
kinds of spectral density, for example, electrons in solids.
The super-Ohmic and sub-Ohmic cases should also be
investigated in the future.
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APPENDIX A: ACTION FOR THREE-LEVEL
SYSTEM

In this Appendix, we derive the action ¢ for a three-
level system coupled to the Gaussian bath. Starting with
Eq. (2.7), we apply the Trotter formula [12] and obtain
the following path-integral sum representation of the cor-
relation function:

(ny (0)na(8)) = %2 BW ... BN p (o1
xny (D) (A1)

where p and ¢ are the numbers of spins on the thermal
and time paths, respectively, and N = p + 2q. nq(o) =
(62 + 0)/2. Y is the summation over the spin states
and the integration over the bath degrees of freedom:

~ N oo .
=3 [ [Ia.
{o()} i=13=0

B; is the product of the matrix elements of the exponen-

(A2)
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tial operators of the Hamiltonian:

BO =5 b b3, (A3)
and
by = (71" exp(~ A0 Ho)|o ),
b5 = (X1 exp(—AD Hp)| X D),
b = (0, XD exp(—AD Hyg) [0, X D), (A9)
where X = (:cgi), mgi), cee a:;i), ...) and
. g if i=1,...,p
A = G if i=p+1,...,p+q (A5)
% if i=p+g+1,...,N.

Due to the trace in Eq. (2.7), we have cyclic conditions
on the spin and bath coordinates: ¢(® = ¢(¥) X0 =
X®), Z in Eq. (A1) is the path-integral representation
of the partition function:

Z=ZB(1)~'-B(N). (A6)
We can rewrite H;,; in the form
Hine = Y Exfr(a?), (A7)
k
where
302 +0—2
Fale) = 222222,
fB(U) = —o0,
302 -0 —2
fe(o) = — 3 (A8)
Then,
bfit) ‘e bi(:{) =exp | — Z A(i)cjkfk(a(i))a:;i) (A9)

ijk

Now, we make use of the following property of Gaussian
integrals:

1
<exp Zdj:l}j > = exXp 5 ZZdjdjl(.’l)j:L‘jl)B 5
i B i g

(A10)

where the average ()p is the integration with Gaussian
weights in x;, and (x;)p = 0. In our case,

()B o< /"'/dml"'dwag)"‘b(BN)- (All)
Then,
(b -+ 6%V B = exp(@int), (A12)

where

1 - 3! ] .
Pint = 5 Z Z A(Z)A( )Cjijlklfk(O'( ))fk’ (0-(z ))

ijk i'j'k!

x (202 5. (A13)

We substitute the following correlation function for the
harmonic oscillators:

< @ I(i')> (sjj'h cosh [ﬁwj(A(ii ) — AG i))/z]
:Bj :I:j B = -

2mjw; sinh(Bhw;/2) ’
(A14)
where we use, as in Ref. [13],
i'—1
A = 37 A, (A15)
Now ¢jnt can be written as
1 . .y i’ A 2 i 2
Pint = 5 .Z.,A(Z)A(z WP () )
+P§iil)a(i)2a(il) + Ps(ii')a(i)a(i')
+P{g® 4 Py, (A16)

where, omitting 2,4’ for simplicity,

P O L9 9
1= 4XAA 4XBB 2XABa
3 3
P, = 5XA44 = 5XBB ~ 3xac + 3xBc,
1 1 1
P; = 2Xa4 + 1XBB + Xcc — xac + 3XAB ~ XBC,

Py = —3xa44 +3xBB + 6x4aB,

Py = —xaa + xBB + 2xac — 2XBC- (A17)

Here, x is obtained by integrating the spectral density:

xgw) = (Ex(t®)Ew (@)

R [ cosh[fiw (A — AE'D) /9]
T /0 Tiw: () sinh(Bhw /2)

(A18)

This integral can be expressed by gamma functions [18].
Using ¢int, the correlation function of Eq. (Al) takes
the form

(n1(0)na(t)) o< Y 5B exp(pint)
{o)}

xny (0Pt ),y (o PHa+D), (A19)

The matrix elements b(()i) can be written in terms of the
spin variables ¢(®). Suppose we have a 3 x 3 symmetric
matrix as follows:

a; az as
M=\ az a4 as | .
az as ae

= 0, we may express M in the form

(A20)

Since o3
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M = exp(a1p1 + a2p2 + a3ps + cups + asps + aeps),
(A21)

where a; = In(a;) and the p;’s are bilinear algebraic func-
2 12,

tions of o, 0%, 0/, o

1
pL= 1(0_20,12 +0’20'l+00'2+0'0'l),
1
ps = —o0" — 5(0_201 +to0?—02— o —g—0o),
1 2 12 !
p3 = 5(0 o'* —od’),
pa = o205’ — 02 o 41,
ps = —a20’ + = (aa+aa’2+02+a'2-—a—o'),
1
Ps = Z(azo'z — 020’ — 00" + 00'). (A22)
With this observation in mind, we write
1 N
bg ) ---b(() ) exp(o), (A23)

where one may show that

= 2 3 {aPo0 6w
2 &

FAD (0D 4 5(0) (4D

+ AP G0 g6+ 4 AE;’)(,(i)2 + A?)a'(i)}. (A24)

Here, the coeflicients are expressed by the matrix ele-
ments of the bare Hamiltonian Hy in Eq. (2.2):

) e® e (2)
Ag’) 11 + (1)+ 23 _ gzz)_ (z)+%s_

A(i)_e§? L e
3 4 4 2’

A9 = _2¢l) 4 &) 4 el

€23,
Af) =ef) - eé’e,’, (A25)
with
D =10 [(6")u] - (A26)
(o is the action for the bare Hamiltonian Hy. The full
action is
© = @0 + Pint- (A27)

APPENDIX B: ADIABATIC CASE FOR
THREE-LEVEL SYSTEM

For the case of a nondynamical adiabatic bath, quan-
tities such as Eq. (2.7) and Eq. (2.8) can be evaluated
in terms of quadrature. The derivation can be carried

out entirely within the context of Hamiltonian mechan-
ics. Nevertheless, it is instructive to carry out the deriva-
tion from the path-integral perspective.

For the adiabatic case, the correlations of electric fields
are independent of time. In the absence of cross correla-
tions, we let

xa if k=k'=A
xg if k=k' =B
xc if k=k'=C

0 otherwise,

(Er(t)Ew (t) = (B1)

where xx > 0 (k = A, B,C). Then the interaction part
of the action ¢ in Eq. (A16) takes the form

Pint = Q157 + Q25251 + Q357 + Q452 + QsS1, (B2)
where
S1=> Aioi, S3=) Al (B3)
and Q; is expressed by
9 9
Ql = §XA + gXBv
3 3
Q2 = ZXA - ZXB?
Q = 1 + l + l
3= SXA 8XB 2XCy
3
Qi= —’Z'(XA + xB)6,
1
Qs = —5 (xa +x8)B. (B4)

To use the following Gaussian integral:

(1,15 82
exp( 5 ) 27ra1/ dé’lexp( ﬁ 5151),

(B5)
we transform Eq. (B2) into the form
Pint = Q1(S2 + 55~ @ 55 51)2 +(Qs — 93 )8t
20 40
+Q4S2 + Q551. (B6)

Thus,
exp(Pint) = _d&dE; _£12_ - 522_
P{@int 27r,/a1a 2a; 2a,

X exp {-— (%é’z + & — Q5) Sl}
x exp{—(&2 — Q4)S2},

where it is understood that the unlabeled integrations
are from —oo to oo, and

B7)

(B8)

One may show that both a; and ay are positive. Finally,
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for the three-level model, we obtain
// d&1dEs &2 £2
exp| —— — —=
Z3a 27!’(0.10,2)1/2 201 2a2
ST
xTr !'exp(—ﬂH')nl exp (ZI; t)

( iH’t)]
xnyexp | —— ,

where the Hamiltonian H' is described by the equation

Q:
20

(n1(0)ny(2))

(B9)

HI=H0+( 52—81 Q5)O’+(£2

- Q‘l)UZa
(B10)

and

/' /‘ d€&1dEy Ef 522
27y /aias 2a4 2a,

xTrexp(—BH'). (B11)
The trace operation in Eq. (B9) is most readily per-
formed numerically by first diagonalizing H' and evalu-
ating the matrix elements of n; in that representation.

As a special case, consider the expression for an asym-
metric two-level system. We use the states 0 = 1 and
—1, and set x4 = xB = 0, x¢ = x. This gives
Q1 =Q2 = Q4 = Qs =0 and Q3 = x/2 in Eq. (B4).
The parameters in Eq. (B8) become a; = x and a; = 0.
The Gaussian function of & in Eq. (B9) approaches the
§ function 8(€2) as ay approaches zero. If we let £, =&
the correlation function for an asymmetric two-level sys-
tem becomes

(nl(O)nl (t

— /dgexp ——)

i H't
xTr |exp(—BH')n exp (Z )

h
( iH’t)}
Xnyexp | — 7 ,

where the Hamiltonian H' is now described by the equa-
tion

(B12)

H,=H0—60, (B13)
and
52
= /dé’ exp (—a) Trexp(—GH'). (B14)
Employing Eq. (B13), we obtain
Zoq = /dé’[exp(—ﬁE+) + exp(—BE_)], (B15)
where
2 E, % E, —2£)2 2
g, =8 B EVE 2 HAKE g

2x 2

Setting K = 0, we obtain the diabatic energies as in Eq.
(4.3). The adiabatic 71 (t) is obtained similarly:

x (1| exp(iH't)n; exp(—iH't)|]1), (B17)
where H' is the same as in Eq. (B13). Employing the
eigenstates and eigenvalues of the 2 x 2 Hermitian ma-
trix H' and shifting £ by x/3, one obtains, for example,
Eq. (4.1) from Eq. (B17).
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